
Beyond NX
An attacker’s guide to Windows anti-exploitation technology

Ben Nagy
bnagy@eeye.com

Page 2Basics – Windows Process Memory

Page 3How functions use the stack
��������	�	�
��

(CALL pushes EIP)

sub esp, 28h

[do stuff]

add esp, 28h

retn

Page 4How functions use the stack
“Normal” Windows:

(CALL pushes EIP)

push ebp

mov ebp, esp
sub esp, 18h

[do stuff]

add esp, 18h

pop ebp

retn 14h

Page 5Standard, boring, buffer overflow...

(CALL pushes EIP)

push ebp
mov ebp, esp

sub esp, 18h
[overflow happens here]

add esp, 18h

pop ebp

retn 14h

Page 6Windows Stack Protection

Page 7Beating Windows Stack Protection

Page 8Beating Windows Stack Protection, Part II

Page 9Beating Windows Stack Protection, Part III

Page 10The trouble with XPSP2

They fixed it. �

• New function RtlIsValidHandler() called during “raw” exception handling
in NTDLL.DLL.

• New function called __ValidateEH3RN called during Visual C++ runtime
library processing of exceptions (specific to VC, haven’t checked others)

Page 11RtlIsValidHandler pseudocode
if (SEHTable != NULL && SEHCount != 0) {

if (SEHTable == -1 && SEHCount == -1) {
// Managed Code but no SEH Registration table
// or IMAGE_LOAD_CONFIG.DllCharacteristics == 4
return FALSE;

}
if (&handler is registered) {

return TRUE;
else

return FALSE;
}

}
// otherwise...
if (&handler is on an NX page) {

if (DEP is turned on) {
bail(STATUS_ACCESS_VIOLATION);

else
return TRUE;

}
}
if (&handler is on a page mapped MEM_IMAGE) {
// normally only true for executable modules

if (SEHTable == NULL && SEHCount == 0) {
return TRUE;
// probably an old or 3rd party DLL
// without SEH registrations

}
return FALSE // we should have caught this before

// so something is wrong.
}
// Handler is on a eXecutable page, but not in module space
// Allow it for compatibility.
return TRUE;

Page 12__ValidateEH3RN, some highlights

__ValidateEH3RN is HUGE. I didn’t reverse the whole thing, just enough to
make me depressed.

1. Check to ensure scopetable array is not on the stack and that it is 4-byte
aligned.

2. Sanity check on the array, made by walking the array from scopetable[0] to
scopetable[trylevel].

3. Nested handlers also sanity checked in step 2, above. This means that any
existing code being used as a fake scopetable entry needs to have
previousTryLevel set to -1 (ie 0xFFFFFFFF preceding the payload address)

4. NtQueryVirtualMemory check on the scopetable against MEM_IMAGE and
READONLY.

5. A lot of other code. Probably some kind of check against the lpfnFilter pointer
itself

Page 13Beating Windows Stack Protection

Some good references:

Pietrek, “A Crash Course on the Depths of Win32 Structured Exception Handling”
http://www.microsoft.com/msj/0197/exception/exception.aspx

HDM, Exploit for MS05-039
http://www.metasploit.com/projects/Framework/modules/exploits/ms05_039_pnp.pm

Litchfield, “Defeating the Stack Based Buffer Overflow Prevention Mechanism of
Microsoft Windows 2003 Server.”
http://www.nextgenss.com/papers/defeating-w2k3-stack-protection.pdf

Yours Truly, “Generic Anti-Exploitation Technology for Windows”
available at http://www.eeye.com/research/whitepapers

Page 14Adding NX

What it does:

Marks memory pages as non-executable at the paging
level – which means it requires hardware support.

This is NOT the same as just calling VirtualProtect(),
those settings mean nothing to the CPU

So, with an NX stack, we can’t use any method that
brings us back to a stack based payload.

Let’s come back to this later...

Page 15Heaps

Heap overflows are really hard.

Post XPSP2 they become diabolical.

... but still possible.

Page 16Heap Recap – Lookaside List

Page 17Heap Recap - Freelists

Page 18Heap Recap – Doubly Linked Lists

Page 19When Unlinking Macros Attack

Page 204-byte overwrite

Page 214-to-n-byte overwrite

Page 224-byte Overwrite – Then What?

Pre XPSP2 / 2003SP1

1. Replace a pointer with location of shellcode

• UEF, VEH, FastPebLock/Unlock (0x7ffdf020/4)

2. Copy shellcode somewhere stable

• PEB, Heap (many copies), Stack

3. ???

4. Profit!

Page 23Heap Protection

8-bit heap header cookie

• Checked on allocate and removal from freelist

Safe Unlinking Check for Doubly Linked Lists

• (B�Flink)�Blink == B && (B�Blink)�Flink == B

PEB Randomisation

Use of RtlEncodePointer for UEF and VEH

Removal of FastPebLockRoutine pointers from PEB

• (Win2k3) only

Page 24Attacking Heap Protection

2 Main Attacks

Unsafe Unlinking (Conover)

• Not even going to try to explain this.

Chunk on Lookaside (Conover / Anisimov)

• Overflow a chunk which is on a lookaside list

• On the second alloc, malicious Flink is returned

• Up to you how to provoke the copy and control transfer

• Should work for multi-shot vulnerabilities... eventually

Page 25Attacking Heap Protection
Some good references:

Halvar Flake, "Third Generation Exploitation“
http://www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt

David Litchfield, "Windows Heap Overflows"
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/bh-win-04-
litchfield.ppt

Matt Conover, Oded Horowitz, "Reliable Windows Exploits"
http://cansecwest.com/csw04/csw04-Oded+Connover.ppt

Alexander Anisimov, "Defeating Windows XP SP2 Heap protection and DEP bypass“
http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf

funnywei & jerry, “Windows Xp Sp2����”
http://www.xfocus.net/articles/200412/762.html

Page 26Heap Protection, Summary

4-byte overwrites getting much harder to provoke

• Safe unlinking check

• Heap Cookies

Even if we can provoke them, what pointer to attack?

• No more 1st Vectored Exception Handler (encoded)

• No more Unhandled Exception Filter (encoded)

• No more PebLockRoutine (Win2k3) or...

• PEB Randomised (XPSP2)

• SystemDirectory pointer in kernel32.dll? (Litchfield)

Page 27Heap Protection, Summary
Future Outlook is Worse

• Low Fragmentation Heap, 32-bit security cookie

Other approaches are needed...

Heap Spray (not really a heap overflow)

• Perfect example is InternetExploiter (SkyLined)

• Allocates many heap blocks like [nop][nop][...][shellcode]

• Land “somewhere” in the heap

Find “Interesting Things” on the heap

• Critical Section Linked List? (Falliere, Sep 2005)

• Application Specific, GDI objects, class destructors, etc etc

Page 28Back to NX
Normally, you would use ret-libc

Problems:

• Can’t RET without bouncing via SEH (stack cookie)

• SEH is fixed now.

• PAGE_EXECUTE_READWRITE � 0x00000040

• Bottom of the stack is full of exception rubbish

Possible Solutions

• Overwrite the stack using chunk-on-lookaside, ret-libc (Anisimov)

• faultrep.dll and SystemDirectory pointer in kernel32.dll (Litchfield)

• Get your code into an eXecutable segment (ie a 2 step process)

Page 29Summary

Detect AttackGlobalGeneric SEH Improvements

FocusAppliesProtection Mechanism

Detect AttackConfigurableNX (Hardware DEP)

Complicate ExploitationGlobalPointer Encoding, UEF, VEH

Complicate ExploitationGlobalRemove Pointers in PEB (2K3)

Complicate ExploitationGlobalPEB Randomisation (XP)

Detect AttackGlobalSafe Unlinking

Complicate ExploitationPer AppSafe SEH

Detect AttackGlobalHeap Cookies

Complicate ExploitationPer AppStack Layout Optimisation

Detect AttackPer AppStack Cookies

Page 30Summary, II

All protections enabled, no NX memory.

Stack

• I don’t know.

Heap

• Tricky...

Other

• Things like dirty reads are still exploitable (eg IE
Window() 0day, COM+ Object Instatiation Bug)

Page 31Summary, III

All protections enabled, including NX memory.

Stack

• I still don’t know.

Heap

• Still tricky, but not much trickier than before.

Other

• Check out the IE Window() 0day – the dirty read is
from a mapped shared segment, which is mapped
as ... RX!

Thank You!

Questions?

