ebEye Digital Security®

Beyond NX

An attacker’s guide to Windows anti-exploitation technology

Ben Nagy
bnagy@eeye.com

Basics — Windows Process Memory Page 2

OxFFFFFFFF
2GB
(drawing not to scale) Kernel
0x80000000
A PEB/TIB etc Ox7FFFFFFF
_
DLLs
EIP
Code
]
Stack
<—ESP
2GB ? Dead Space f
Heaps, Memory mapped files etc
v 0x00000000

_ SEuS Dignal Seenntu®

How functions use the stack

Quick and dirty:

2GB

(drawing not to scale)

(CALL pushes EIP)

sub esp, 28h
[do stuff]

add esp, 28h
retn

2GB

A

Page 3
OxFFFFFFFF
Kernel
0x80000000
PEB/TIB etc Ox7FFFFFFF
DLLs T
EIP
Code l
Stack *
¢ <«—ESP
Dead Space
Heaps, Memory mapped files etc
0x00000000

How functions use the stack Page 4

“Normal” Windows:

(CALL pushes EIP)
push ebp

mov ebp, esp
sub esp, 18h
[do stuff]

add esp, 18h
pop ebp

retn 14h

Stack frame of
calling function

Stack
Grows

Function Parameters
(pushed by caller)

Return Address
(pushed by CALL operation)

Saved Stack Pointer

(optional)

Local Variables
(char[] array, int foo, bar)

Overflow
Direction

ESP ——>

Standard, boring, buffer overflow...

(CALL pushes EIP)
push ebp

mov ebp, esp

sub esp, 18h
[overflow happens here]
add esp, 18h

pop ebp

retn 14h

ESP >

... and the

shellcode runs
A

Caller’'s Stack
Frame

Evil RET Address

(not important)

Shellcode

0x90,0x90,0x90
(nop sled)

Page 5

After the RET...

EIP lands here
somewhere...

Windows Stack Protection

Stack
Grows

ESP —=———>

Stack frame of
calling function

Saved Return Address
(RET)

Saved Stack Pointer
(EBP)

Local Variables
(int bar, u_long baz)

Local Pointers
(char *foo)

Local Buffers
(char[] array)

Overflow
Direction

Stack
Grows

\{

ESP—>

Stack frame of
calling function

Saved Return Address
(RET)

Saved Stack Pointer
(EBP)

Stack Canary

Local Buffers
(char[] array)

Local Variables
(char *foo, int bar, baz)

“Ildeal Stack Layout”

Page 6

Overflow
Direction

e

eEye Digital Securitye®

Beating Windows Stack Protection Page 7

Pointer to Handler
Stack SEH Record
Pointer to Next Record

Grows

]

Stack frame of
calling function

Stack frame of
calling function

RET

Stack Cookie

Vulnerable Buffer gf’er“.o""
irection

Beating Windows Stack Protection, Part li Page 8

Shellcode

Owned SEH Pointer POP, POP, RET
NOP, NOP, SHORT JUMP

Ex Stack Cookie
Overflow started here | overflow
Old ESP —=———p Direction
Exception Information
(pushed by exception
dispatcher functions)

ESP+8 e | Pointer to SEH Structure

Stuff we don’t want

Beating Windows Stack Protection, Part lll Pageo

®

Exception Raised!
Windows finds a registered
exception handler, pushes

information about the exception
to the stack and transfers
execution to the location in the
owned SEH pointer. The
exception needs to occur before
the stack cookie is checked.

@

Owned.

Short jump over the
pointer, into the payload.

Old ESP =—>»

ESP+8 —>

Shellcode

Owned SEH Pointer

®

———> POP, POP, RET

SHORT JUMP, NOP, NOP

€

Ex Stack Cookie

Overflow started here

Exception Information
(pushed by exception
dispatcher functions)

Pointer to SEH Structure

The owned pointer needs to
take us to code that will get us
back to our exception record.
There is a pointer to it at ESP+8,
for example, so any POP, POP,
RET will work. Could also find
CALL EBP+0C or many others.

RET to Freedom

@ RET will take us to this
address, since it is at the

Stuff we don’t want

top of the stack after the
POPs

e

_ SEuS Dignal Seenntu®

The trouble with XPSP2 Page 10

They fixed it. ®

« New function RtllsValidHandler() called during “raw” exception handling
in NTDLL.DLL.

 New function called __ ValidateEH3RN called during Visual C++ runtime
library processing of exceptions (specific to VC, haven’t checked others)

RtlisValidHandler pseudocode Page 11

if (SEHTable != NULL && SEHCount != 0)

if (SEHTable == -1 && SEHCount == —l) {
// Managed Code but no SEH Registration table
// or IMAGE_LOAD_CONFIG.DllCharacteristics ==
return FALSE;

}

if (&handler is registered) {
return TRUE;

else
return FALSE;

}
// otherwise...
if (&handler is on an NX page) {
if (DEP is turned on) {
bail (STATUS_ACCESS_VIOLATION) ;
else
return TRUE;

}
if (&handler is on a page mapped MEM_IMAGE) {
// normally only true for executable modules
if (SEHTable == NULL && SEHCount == 0) ({
return TRUE;
// probably an old or 3rd party DLL
// without SEH registrations
}
return FALSE // we should have caught this before
// so something is wrong.
}
// Handler is on a eXecutable page, but not in module space
// Allow it for compatibility.
return TRUE;

<>

eEye Digital Security®

eEye Digital Security

___ValidateEH3RN, some highlights Page 12

_ ValidateEH3RN is HUGE. | didn’t reverse the whole thing, just enough to
make me depressed.

1. Check to ensure scopetable array is not on the stack and that it is 4-byte
aligned.

2. Sanity check on the array, made by walking the array from scopetable[0] to
scopetable[irylevel].

3. Nested handlers also sanity checked in step 2, above. This means that any
existing code being used as a fake scopetable entry needs to have
previousTrylLevel set to -1 (ie OXFFFFFFFF preceding the payload address)

4. NtQueryVirtualMemory check on the scopetable against MEM_IMAGE and
READONLY.

5. Aot of other code. Probably some kind of check against the IpfnFilter pointer
itself

Beating Windows Stack Protection Page 13

Some good references:

Pietrek, “A Crash Course on the Depths of Win32 Structured Exception Handling”
http://www.microsoft.com/msj/0197/exception/exception.aspx

HDM, Exploit for MS05-039
http://www.metasploit.com/projects/Framework/modules/exploits/ms05 039 pnp.pm

Litchfield, “Defeating the Stack Based Buffer Overflow Prevention Mechanism of
Microsoft Windows 2003 Server.”
http://www.nextgenss.com/papers/defeating-w2k3-stack-protection.pdf

Yours Truly, “Generic Anti-Exploitation Technology for Windows”
available at http://www.eeye.com/research/whitepapers

Addlng NX Page 14
What it does:

Marks memory pages as non-executable at the paging
level — which means it requires hardware support.

This is NOT the same as just calling VirtualProtect(),
those settings mean nothing to the CPU

So, with an NX stack, we can’t use any method that
brings us back to a stack based payload.

Let’'s come back to this later...

Heaps Page 15

Heap overflows are really hard.

Post XPSP2 they become diabolical.

... but still possible.

Heap Recap — Lookaside List Page 16

Lookaside List[n]
(Allocation unit 8 bytes)

i
NULL

o))

eEye Digital Securitye®

Heap Recap - Freelists Page 17

FreeList[n]
(Allocation unit 8 bytes)

] 1024 J_—*{ 1400 [4006 J.{ 4096 Start

P D e D e (D S
Start

- Start

eEye Digital Securitye®

Heap Recap — Doubly Linked Lists Page 18

eEye Digital Securitye®

When Unlinking Macros Attack Page 19

N
A C
_)
mov Blink = [Flink]
mov Flink = [Blink+4]
r N\ o SIIEEEEEN r N
N
A) C
What | '
\ ‘J, t;;_______‘,,', \ y
Faked Chunk Header
Overwrite! |

e

_ SEuS Dignal Seenntu®

4-byte overwrite Page 20
Heap Overflows — The 4-byte Overwrite
Overflow past the end of current heap block, create adjacent fake block. Halvar
used a fake VirtualAlloc header (fake busy block). Conover/Oded used fake free
blocks, and waited for a heap coalesce.
Fake Block
Overflow starts here
@ @ Header
>
Halvar’s 4-byte Overwrite
Fake block contains VirtualAlloc headers. When Block B is freed, the prev and next
VirtualAlloc blocks need to get updated, which means a linked list pointer update,
which means 4 byte overwrite.
Coalesce on free 4-byte Overwrite
Fake block has a free header. When Block A is freed, RtIFreeHeap sees two
adjacent free blocks and wants to coalesce them. Before it does that it needs to
remove Block B from its Freelist, which means a linked list pointer update, which
means 4 byte overwrite
e

_ SEuS Dignal Seenntu®

4-t0-n-byte overwrite Page 21

Heap Overflows — The 4-to-n-Byte Overwrite

Lookaside List[n] Change the pointer at the head of Lookaside List [n] to point somewhere the

(Allocation unit 8 bytes) attacker can control. Arrange things so that the program allocates a block of size n,

and copies an attacker controlled buffer into it. Can overwrite up to 1016 bytes of
process memory.

NULL
0x7FFDF130 NULL

1016 1016 NULL

4-byte Overwrite — Then What? Page 22

Pre XPSP2 / 2003SP1
1. Replace a pointer with location of shellcode
* UEF, VEH, FastPeblLock/Unlock (0x7fdf020/4)

2. Copy shellcode somewhere stable
PEB, Heap (many copies), Stack
3. ?77?

4. Profit!

Heap Protection Page 23

8-bit heap header cookie

* Checked on allocate and removal from freelist
Safe Unlinking Check for Doubly Linked Lists
 (B>Flink)>Blink == B && (B>Blink)>Flink ==
PEB Randomisation

Use of RtlEncodePointer for UEF and VEH

Removal of FastPebLockRoutine pointers from PEB
(Win2k3) only

Attacking Heap Protection Page 24

2 Main Attacks
Unsafe Unlinking (Conover)
* Not even going to try to explain this.

Chunk on Lookaside (Conover / Anisimov)

« Overflow a chunk which is on a lookaside list

« On the second alloc, malicious Flink is returned

« Up to you how to provoke the copy and control transfer

« Should work for multi-shot vulnerabilities... eventually

Attacking Heap Protection Page 25
Some good references:

Halvar Flake, "Third Generation Exploitation®
http://www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt

David Litchfield, "Windows Heap Overflows"
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/bh-win-04-
litchfield.ppt

Matt Conover, Oded Horowitz, "Reliable Windows Exploits"
http://cansecwest.com/csw04/csw04-Oded+Connover.ppt

Alexander Anisimov, "Defeating Windows XP SP2 Heap protection and DEP bypass*
http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf

funnywei & jerry, “Windows Xp Sp2101)”
http://www.xfocus.net/articles/200412/762.html

Heap Protection, Summary Page 26

4-byte overwrites getting much harder to provoke
« Safe unlinking check

 Heap Cookies

Even if we can provoke them, what pointer to attack?
* No more 18t Vectored Exception Handler (encoded)

* No more Unhandled Exception Filter (encoded)

* No more PebLockRoutine (Win2k3) or...

« PEB Randomised (XPSP2)

« SystemDirectory pointer in kernel32.dll? (Litchfield)

Heap Protection, Summary Page 27
Future Outlook is Worse

« Low Fragmentation Heap, 32-bit security cookie

Other approaches are needed...

Heap Spray (not really a heap overflow)

« Perfect example is InternetExploiter (SkyLined)

« Allocates many heap blocks like [nop][nop][...][shellcode]

« Land “somewhere” in the heap

Find “Interesting Things” on the heap

« Critical Section Linked List? (Falliere, Sep 2005)

« Application Specific, GDI objects, class destructors, etc etc

Back to NX Page 28

Normally, you would use ret-libc

Problems:

« Can’t RET without bouncing via SEH (stack cookie)

« SEH is fixed now.

« PAGE_EXECUTE_READWRITE - 0x00000040

« Bottom of the stack is full of exception rubbish

Possible Solutions

« Overwrite the stack using chunk-on-lookaside, ret-libc (Anisimov)
 faultrep.dll and SystemDirectory pointer in kernel32.dll (Litchfield)

« Get your code into an eXecutable segment (ie a 2 step process)

Summary Page 29

Stack Cookies Per App Detect Attack
Stack Layout Optimisation Per App Complicate Exploitation
Heap Cookies Global Detect Attack
Safe Unlinking Global Detect Attack
PEB Randomisation (XP) Global Complicate Exploitation
Remove Pointers in PEB (2K3) Global Complicate Exploitation
Pointer Encoding, UEF, VEH Global Complicate Exploitation
NX (Hardware DEP) Configurable | Detect Attack
Safe SEH Per App Complicate Exploitation
Generic SEH Improvements Global Detect Attack

_ SEuS Dignal Seenntu®

Summary, Il Page 30
All protections enabled, no NX memory.

Stack

« | don’t know.

Heap

* Tricky...

Other

* Things like dirty reads are still exploitable (eg IE
Window() Oday, COM+ Object Instatiation Bug)

Summary, Il Page 31
All protections enabled, including NX memory.

Stack

« | still don't know.

Heap

 Sitill tricky, but not much trickier than before.
Other

« Check out the IE Window() Oday — the dirty read is

from a mapped shared segment, which is mapped
as ... RX

Questions?
E—————————

